MLAD – Keeping factories running using machine learning for anomaly detection.

Phew. Thank goodness it’s over. The ghastliest year known to most of us ever – finally done, dusted, finito, fertig. Let’s just hope, as many folks are repeating: ‘2021 will be better; it can’t be worse, surely?!’

For a good 10 months of last year practically the whole world was in a permanent state of shock. And I don’t just mean the world’s population; private business and national economies were also hit incredibly hard. Alas, one field that hasn’t been affected badly at all – in fact it has only benefitted from the pandemic, greatly – is cybercrime. Folks locked down and working from home and spending much more time online meant there were many more potential cybercrime victims ripe for the hacking. And not just individual users, but also companies: with employees working from home, many corporate networks came under attack as they weren’t sufficiently protected since, in the rush to get everyone working remotely quickly in the spring, security wasn’t given priority. In short, the whole world’s digital status quo was also badly shaken up by this vicious virus from hell.

As a result of the rise in cybercrime – in particular that targeting vulnerable corporate networks – the cybersecurity sector has been busier than ever. Yes – that includes us! 2020 for us as a Kompany turned out to be most productive. For example, the number of new versions of our solutions launched throughout the year was most impressive – especially in the enterprise sector.

We’ve also had new versions in our industrial cybersecurity solutions line up, one of which is what I want to talk about today – some teKh known as MLAD. Not to be confused with online funny-video sites, or MLAD that’s short for Minimum Local Analgesic Dose, or MLAD that’s short for Mid Left Anterior Descending artery, our MLAD is short for Machine Learning for Anomaly Detection.

If you’re a regular reader of our blogs, you may recall something about this tech of ours. Maybe not. Anyway – here’s a refresher/into, just in case…

Our MLAD is a system that uses machine learning to analyze telemetry data from industrial installations to pinpoint anomalies, attacks or breakdowns.

Let’s say you have a factory with thousands of sensors installed throughout – some measuring pressure, some temperature, others – whatever else. Each sensor generates a constant flow of information. An employee keeping track of all those flows is fairly impossible, but for machine learning – it’s a walk in the park. Having preliminarily trained up a neuro network, MLAD can, based on direct or indirect correlations, detect that something’s wrong in a certain section of the factory. In doing so, million or multimillion-dollar damages caused by potential incidents not nipped in the bud can be avoided.

Ok – that’s the overall idea of what MLAD does. Let me now try and relate the granular scale of the analysis MLAD accomplishes using a medical metaphor…
Read on: MLAD

Online conference – Chinese style (complete with pioneering-tech superstition).

Normally, my work schedule is made up of all sorts of meetings, press interviews, taking part in exhibitions, speaking at conferences all over the globe. Normally. Not this year, darn it!

Now, some of the events I get to are one-offs. Some are regular, recurring ones (mostly annual) but to which I get only once in a while. While there are some recurring events that I deem simply must-attend. And one of my main must-attends every fall or early winter is the World Internet Conference in Wuzhen, organized by the Cyberspace Administration of China, which I’ve participated in every year (up to 2019, that is) since 2015 – just a year after it’s ‘inauguration’ a year earlier. This year, alas – no traditional trip to eastern China; however, much like here at K, not being able to be present in-person does not mean a big and important event can’t still go on. Which is great news, as this means I can still get what I want to say across to: the main players of the Chinese internet – state regulators, heads of provinces and regional development institutes, and also bosses of the Chinese big tech companies; and all from a huge screen – perhaps the biggest I’ve ever seen!

Sure, it would have been nice to be there in person – to stroll around the quaint cobbled narrow streets of the old ancient town (as old as the Tang dynasty, apparently) and take a boat ride along its canals, which indeed some folks did manage to do, somehow. But I was playing it safe. Still, the plentiful ‘in-person’ activity at the venue is at least cause for optimism during these remote-everything times.

But now for the main thing: about Wuzhen superstition…

Read on…

Flickr photostream

  • K Christmas Party 2020
  • K Christmas Party 2020
  • K Christmas Party 2020
  • K Christmas Party 2020

Instagram photostream

Drones – no more airport interruption scandals: we’re here to ground you.

For a few weeks already, this here mysterious, shiny, clearly hi-tech, futuristo device has been complementing the minimalistic office furniture of my corner office at our HQ. It’s so shiny and fancy and slick and post-modern that whenever I get a visitor – which is not often of late due to our general WFH-policy – it’s the first thing they notice, and the first question is always, simply, obviously – ‘what is that?!’ ->

Is it a bird, is it a plane, is it a camera (on a tripod), is it a gun, is it some kind of scanner? Warmer, warmer!…

But before I tell you – quick digression!…

Read on…

Enter your email address to subscribe to this blog

OpenTIP, season 2: drop by more often!

A year ago I addressed cybersecurity specialists to let them know about a new tool we’d developed – our Open Threat Intelligence Portal (OpenTIP). Tools for analysis of complex threats (or merely suspicious objects) – the very same ones used by our famous cyber-ninjas in GReAT – became accessible to anyone who wanted to use them. And use them lots of folks wanted – testing zillions of files every month.

But in just a year a lot has changed. Things have become much more difficult for cybersecurity experts due to practically the whole world having to work remotely because of coronavirus. Maintaining the security of corporate networks has become a hundred times more troublesome. Time, which was precious enough as it was before corona, has become a highly precious resource. And today the most common request we get from our more sophisticated users is simple and direct: ‘Please give us API access and increase rate limits!’

You asked. We delivered…

In the new version of OpenTIP there’s now user registration available. And I highly recommend regular visitors do register, since when you do a large chunk of the paid Threat Intelligence Portal turns up out of the ether.

Read on…

Ransomware: no more jokes.

First: brief backgrounder…

On September 10, the ransomware-malware DoppelPaymer encrypted 30 servers of a hospital in the German city of Dusseldorf, due to which throughput of sick patients fell dramatically. A week ago, due to this fall, the hospital wasn’t able to accept a patient who was in need of an urgent operation, and had to send her to a hospital in a neighboring city. She died on the way. It was the first known case of loss of human life as a result of a ransomware attack.

A very sad case indeed – especially when you look closer: there was the fatal ‘accident’ itself (presuming the attackers didn’t foresee a fatality caused by their ghastly actions); there was also a clear neglect of the following of basic rules of cybersecurity hygiene; and there was also an inability on the part of the law enforcement authorities to successfully counter the organized criminals involved.

The hackers attacked the hospital’s network via a vulnerability (aka Shitrix) on the Citrix Netscaler servers, which was patched as far back as January. It appears that the system administrators waited way too long before finally getting round to installing the patch, and in the meantime the bad guys were able to penetrate the network and install a backdoor.

Up to here – that’s all fact. From here on in: conjecture that can’t be confirmed – but which does look somewhat likely…

It can’t be ruled out that after some time access to the backdoor was sold to other hackers on underground forums as ‘access to a backdoor at a university’. The attack indeed was initially aimed at the nearby Heinrich Heine University. It was this university that was specified in the extortionists’ email demanding a ransom for the return of the data they’d encrypted. When the hackers found out that it was a hospital – not a university – they were quick to hand it all the encryption keys (and then they disappeared). It looks like Trojan’ed hospitals aren’t all that attractive to cybercriminals – they’re deemed assets that are too ‘toxic’ (as has been demonstrated in the worst – mortal – way).

It’s likely that the Russian-speaking Evil Corp hacker group is behind DoppelPaymer, a group with dozens of other high-profile hacks and shakedowns (including on Garmin‘s network) to its name. In 2019 the US government issued a indictment for individuals involved in Evil Corp, and offered a reward of five million dollars for help in catching them. What’s curious is that the identities of the criminals are known, and up until recently they’d been swaggering about and showing off their blingy gangster-style lifestyles – including on social media.


What’s the world come to? There’s so much wrong here. First, there’s the fact that hospitals are suffering at the hands of ransomware hackers in the first place – even though, at least in this deadly case in Dusseldorf, it looks like it was a case of mistaken identity (hospital – not a university). Second, there’s the fact that universities are being targeted (often to steal research data – including COVID-19 related). But here’s my ‘third’ – from the cybersecurity angle…

How can a hospital be so careless? Not patching a vulnerability on time – leaving the door wide open for cyber-scum to walk right through it and backdoor everything? How many times have we repeated that FreeBSD (which is what Netscaler works on) is in no way a guarantee of security, and in fact is just the opposite: a cybersecurity expert’s faux ami? This operating system is far from being immune and has weaknesses that can be used in sophisticated cyberattacks. And then of course there’s the fact that such a critical institution as a hospital (also infrastructural organizations), need to have multi-level protection, where each level backs up the others: if the hospital had had reliable protection installed on its network the hackers would probably never have managed to pull off what they did.

The German police are now investigating the chain of events that led up to the death of the patient. And I hope that the German authorities will turn to those of Russia with a formal request for cooperation in detaining the criminals involved.

See, for police to open a criminal case, a formal statement/request or subject matter of a crime committed needs to be presented at the very least. This or that article in the press or some other kind of non-formal comments or announcement aren’t recognized by the legal system. No formal request – no case. Otherwise attorneys would easily cause the case to collapse in the blink of an eye. However, if there is what looks like credible evidence of a crime committed, there’s an inter-governmental interaction procedure in place that needs to be followed. OTT-formal: yes; but that’s ‘just the way it is’. Governments need to get past their political prejudices and act together. Folks are dying already – and while international cooperation is largely frozen by geopolitics, cybercriminals will keep on reaching new heights lows of depraved actions against humanity.

UPD: The first step toward reinstating cooperation in cybersecurity has been taken. Fingers crossed…

Btw: Have you noticed how there’s hardly ever any news of successful attacks by ransomware hackers against Russian organizations? Have you ever wondered why? I personally won’t entertain for a moment the silly conspiracy theories about these hackers working for Russian secret services – as there are many ransomware groups around the world. Here’s why, IMHO: Because most Russian companies are protected by good quality cyber-protection, and soon they will be protected by a cyber-immune operating system – yep, that very protection that’s been banned for use in U.S. state institutions. Go figure.

UPD2: Just yesterday a ransomware attack was reported on one of America’s largest hospital chains, UHS: its computers – which serve ~250 facilities across the whole country – were shut down, which led to cancelled surguries, diverted ambulances, and patient registrations having to be completed oin paper. There are no further details as yet…

First post-quarantine industrial.

A few days ago, a momentous, landmark event took place. It was in a seaside city – a ‘regular’ one, where it gets dark of a night (unlike others I can think of:) ->

The momentous event was – drum roll, cymbal…….. our first post-quarantine conference! In sunny ~Sochi!

And here’s my first post-quarantine event badge! ->

Read on…

Cybersecurity – the new dimension of automotive quality.

Quite a lot of folks seem to think that the automobile of the 21st century is a mechanical device. Sure, it has added electronics for this and that, some more than others, but still, at the end of the day – it’s a work of mechanical engineering: chassis, engine, wheels, steering wheel, pedals… The electronics – ‘computers’ even – merely help all the mechanical stuff out. They must do – after all, dashboards these days are a sea of digital displays, with hardly any analog dials to be seen at all.

Well, let me tell you straight: it ain’t so!

A car today is basically a specialized computer – a ‘cyber-brain’, controlling the mechanics-and-electrics we traditionally associate with the word ‘car’ – the engine, the brakes, the turn indicators, the windscreen wipers, the air conditioner, and in fact everything else.

In the past, for example, the handbrake was 100% mechanical. You’d wrench it up – with your ‘hand’ (imagine?!), and it would make a kind of grating noise as you did. Today you press a button. 0% mechanics. 100% computer controlled. And it’s like that with almost everything.

Now, most folks think that a driver-less car is a computer that drives the car. But if there’s a human behind the wheel of a new car today, then it’s the human doing the driving (not a computer), ‘of course, silly!’

Here I go again…: that ain’t so either!

With most modern cars today, the only difference between those that drive themselves and those that are driven by a human is that in the latter case the human controls the onboard computers. While in the former – the computers all over the car are controlled by another, main, central, very smart computer, developed by companies like Google, Yandex, Baidu and Cognitive Technologies. This computer is given the destination, it observes all that’s going on around it, and then decides how to navigate its way to the destination, at what speed, by which route, and so on based on mega-smart algorithms, updated by the nano-second.

A short history of the digitalization of motor vehicles

So when did this move from mechanics to digital start?

Some experts in the field reckon the computerization of the auto industry began in 1955 – when Chrysler started offering a transistor radio as an optional extra on one of its models. Others, perhaps thinking that a radio isn’t really an automotive feature, reckon it was the introduction of electronic ignition, ABS, or electronic engine-control systems that ushered in automobile-computerization (by Pontiac, Chrysler and GM in 1963, 1971 and 1979, respectively).

No matter when it started, what followed was for sure more of the same: more electronics; then things started becoming more digital – and the line between the two is blurry. But I consider the start of the digital revolution in automotive technologies as February 1986, when, at the Society of Automotive Engineers convention, the company Robert Bosch GmbH presented to the world its digital network protocol for communication among the electronic components of a car – CAN (controller area network). And you have to give those Bosch guys their due: still today this protocol is fully relevant – used in practically every vehicle the world over!

// Quick nerdy post-CAN-introduction digi-automoto backgrounder: 

The Bosch boys gave us various types of CAN buses (low-speed, high-speed, FD-CAN), while today there’s FlexRay (transmission), LIN (low-speed bus), optical MOST (multimedia), and finally, on-board Ethernet (today – 100mbps; in the future – up to 1gbps). When cars are designed these days various communications protocols are applied. There’s drive by wire (electrical systems instead of mechanical linkages), which has brought us: electronic gas pedals, electronic brake pedals (used by Toyota, Ford and GM in their hybrid and electro-mobiles since 1998), electronic handbrakes, electronic gearboxes, and electronic steering (first used by Infinity in its Q50 in 2014).

BMW buses and interfaces

Read on…

The Catcher in the YARA – predicting black swans.

It’s been a long, long time since humanity has had a year like this one. I don’t think I’ve known a year with such a high concentration of black swans of various types and forms in it. And I don’t mean the kind with feathers. I’m talking about unexpected events with far-reaching consequences, as per the theory of Nassim Nicholas Taleb, published in his book The Black Swan: The Impact of the Highly Improbable in 2007. One of the main tenets of the theory is that, with hindsight, surprising events that have occurred seem so ‘obvious’ and predictable; however, before they occur – no one does indeed predict them.

Cybersecurity experts have ways of dealing with ambiguity and predicting black swans with YARA

Example: this ghastly virus that’s had the world in lockdown since March. It turns out there’s a whole extended family of such viruses – several dozen coronaviridae, and new ones are found regularly. Cats, dogs, birds, bats all get them. Humans get them; some cause common colds; others… So surely vaccines need to be developed against them as they have been for other deadly viruses like smallpox, polio, whatever. Sure, but that doesn’t always help a great deal. Look at flu – still no vaccine that inoculates folks after how many centuries? And anyway, to even start to develop a vaccine you need to know what you’re looking for, and that is more art than science, apparently.

So, why am I telling you this? What’s the connection to… it’s inevitably gonna be either cybersecurity or exotic travel, right?! Today – the former ).

Now, one of the most dangerous cyberthreats in existence are zero-days – rare, unknown (to cybersecurity folks et al.) vulnerabilities in software, which can do oh-my-grotesque large-scale awfulness and damage – but they often remain undiscovered up until the moment when (sometimes after) they’re exploited to inflict the awfulness.

However, cybersecurity experts have ways of dealing with unknown-cyber-quantities and predicting black swans. And in this post I want to talk about one such way: YARA.

GReAT’s Costin Raiu examined Hacking Team’s emails and put together out of practically nothing a YARA rule, which detected a zero-day exploit

Briefly, YARA helps malware research and detection by identifying files that meet certain conditions and providing a rule-based approach to creating descriptions of malware families based on textual or binary patterns. (Ooh, that sounds complicated. See the rest of this post for clarification.:) Thus, it’s used to search for similar malware by identifying patterns. The aim: to be able to say: ‘it looks like these malicious programs have been made by the same folks, with similar objectives’.

Ok, let’s take another metaphor: like a black swan, another water-based one; this time – the sea…

Let’s say a network you (as a cyber-sleuth) are studying (= examining for the presence of suspicious files/directories) is the ocean, which is full of thousands of different kinds of fish, and you’re an industrial fisherman out on the ocean in your ship casting off huge drift nets to catch the fish – but only certain breeds of fish (= malware created by particular hacker groups) are interesting to you. Now, the drift net is special: it has special ‘compartments’ into which fish only get into as per their particular breed (= malware characteristics). Then, at the end of the shift, what you have is a lot of caught fish all compartmentalized, and some of those fish will be relatively new, unseen before fish (new malware samples) about which you know practically nothing, but they’re in certain compartments labeled, say, ‘Looks like Breed X’ (hacker group X) and ‘Looks like Breed Y’ (hacker group Y).

We have a case that fits the fish/fishing metaphor perfectly. In 2015, our YARA guru and head of GReAT, Costin Raiu, went full-on cyber-Sherlock mode to find an exploit for Microsoft’s Silverlight software. You really need to read that article on the end of the ‘case’ link there but, if very briefly, what Costin did was carefully examine certain hacker-leaked email correspondence (of ‘Hacking Team’: hackers hacking hackers; go figure!) published in a detailed news article to put together out of practically nothing a YARA rule, which went on to help find the exploit and thus protect the world from all sorts of mega-trouble.

So, about these YARA rules…

Graduates receive a certificate confirming their new status as a YARA ninja. Previous graduates say it really does help in their professional career

We’ve been teaching the art of creating YARA rules for years. And since the cyberthreats YARA helps uncover are rather complex, we always ran the courses in person – offline – and only for a narrow group of top cyber-researchers. Of course, since March, offline training have been tricky due to lockdown; however, the need for education has hardly gone away, and indeed we’ve seen no dip in interest in our courses. This is only natural: the cyber-baddies continue to think up ever more sophisticated attacks – even more so under lockdown. Accordingly, keeping our special know-how about YARA to ourselves during lockdown looked just plain wrong. Therefore, we’ve (i) transferred the training format from offline to online, and (ii) made it accessible to anyone who wants to do it. For sure it’s paid, but the price for such a course at such a level (the very highest:) is very competitive and market-level.

Introducing! ->

Read on…

Into resource-heavy gaming? Check out our gaming mode.

Nearly 30 years ago, in 1993, the first incarnation of the cult computer game Doom appeared. And it was thanks to it that the few (imagine!) home computer owners back then found out that the best way of protecting yourself from monsters is to use a shotgun and a chainsaw ).

Now, I was never big into gaming (there simply wasn’t enough time – far too busy:); however, occasionally, after a long day’s slog, colleagues and I would spend an hour or so as first-person shooters, hooked up together on our local network. I even recall Duke Nukem corporate championships – results tables in which would be discussed at lunch in the canteen, and even bets being made/taken as to who would win! Thus, gaming – it was never far away.

Meanwhile, our antivirus appeared – complete with pig squeal (turn on English subs – bottom-right of video) to give fright to even the most fearsome of cyber-monsters. The first three releases went just fine. Then came the fourth. It came with a great many new technologies against complex cyberthreats, but we hadn’t thought through the architecture well enough – and we didn’t test it sufficiently either. The main issue was the way it hogged resources, slowing down computers. And software generally back then – and gaming in particular – was becoming more and more resource-intensive by the day; the last thing anyone needed was antivirus bogarting processor and RAM too.

So we had to act fast. Which we did. And then just two years later we launched our legendary sixth version, which surpassed everyone on speed (also reliability and flexibility). And for the last 15 years our solutions have been among the very best on performance.

Alas, leopards are thought to never lose their spots. A short-term issue affecting computer performance turned into a myth – and it’s still believed by some today. Competitors were of course happy to see this myth grow… to mythical proportions; we weren’t.

But, what has any of this K memory-laning got to do with Doom? Well…

Read on…

An early-warning system for cyber-rangers (aka – Adaptive Anomaly Control).

Most probably, if you’re normally office-based, your office right now is still rather – or completely – empty, just like ours. At our HQ the only folks you’ll see are the occasional security guards, and the only noise you’ll hear is the hum of the cooling systems of our heavily-loaded servers given that everyone’s hooked up and working from home.

You’d never imagine that, unseen, our technologies, experts and products are working 24/7 protecting the cyberworld. But they are. But the bad guys are up to new nasty tricks at the same time. Just as well, then, that we have an early-warning system in our cyber-protection collection of tools. But I’ll get to that in a bit…

The role of an IT security guy or girl in some ways resembles that of a forest ranger: to catch the poachers (malware) and neutralize the threat they pose for the forest’s dwellers, first of all you need to find them. Of course, you could simply wait until a poacher’s rifle goes off and run toward where the sound came from, but that doesn’t exclude the possibility that you’ll be too late and that the only thing you’d be able to do is clear up the mess.

You could go full-paranoiac: placing sensors and video cameras all over the forest, but then you might find yourself reacting to any and every rustle that’s picked up (and soon losing sleep, then your mind). But when you realize that poachers have learned to hide really well – in fact, to not leave any trace at all of their presence – it then becomes clear that the most important aspect of security is the ability to separate suspicious events from regular, harmless ones.

Increasingly, today’s cyber-poachers are camouflaging themselves with the help of perfectly legitimate tools and operations.

A few examples: opening a document in Microsoft Office, a system administrator being granted remote access, the launch of a script in PowerShell, and the activation of a data encryption mechanism. Then there’s the new wave of so-called fileless malware, leaving literally zero traces on a hard drive, which seriously limits the effectiveness of traditional approaches to protection.

Examples: (i) the Platinum threat actor used fileless technologies to penetrate computers of diplomatic organizations; and (ii) office documents with malicious payload were used for infections via phishing in the operations of the DarkUniverse APT; and there are plenty more. One more example: the fileless ransomware-encryptor ‘Mailto’ (aka Netwalker), which uses a PowerShell script for loading malicious code directly into the memory of trusted system processes.

Now, if traditional protection isn’t up to the task, it’s possible to try and forbid to users a whole range of operations, and to introduce tough policies on access and usage of software. However, given this, both the users and the bad guys will eventually probably find ways round the prohibitions (just like the prohibition of alcohol was always gotten around too:).

Much better would be to find a solution that can detect anomalies in standard processes and for the system administrator to be informed about them. But what is crucial is for such a solution to be able to learn how to automatically determine accurately the degree of ‘suspiciousness’ of processes in all their great variety, so as not to torment the system administrator with constant cries of ‘wolf!’

Well – you’ve guessed it! – we have such a solution: Adaptive Anomaly Control, a service built upon three main components – rules, statistics and exceptions.

Read on…